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Abstract—This paper considers the problem of shooter local-
ization using a network of soldier-worn gunfire detection systems.
Proposed scheme utilizes the benefits of sensor network layout
of all the sensors within a small combat unit to help refine
localization accuracy. If the soldier is within the field of view
of the shockwave, then using the acoustic phenomena analysis
of small-arms fire, the gunfire detection system can localize
the source of the incoming fire and the bullet’s trajectory with
respect to the sensor location. These individual solutions, usually
in the form of a bearing and range relative to the soldier, are
then relayed to the central node. At the central node level, the
individual solutions are fused along with the GPS locations on
the soldiers to yield a highly accurate geo-rectified solution.

Keywords: Shooter localization, gunfire detection system,

maximum likelihood estimation, Gauss-Newton method.

I. INTRODUCTION

There is an eminent need for highly accurate small-arms

gunfire detection systems on individual soldiers for added

battlefield situational awareness and threat assessment. Today,

several acoustic shooter localization systems are commer-

cially available [1], [2]; an overview of such systems can be

found in [3]. Currently operational Soldier Wearable Gunfire

Detection Systems (SW-GDSs) can provide an appropriate

level of localization accuracy as long as the soldier is at

an ideal location (range, attitude, etc.) when incoming fire

is received [4]–[6]. The localization system suffers severe

performance degradation when the soldier is at a non-ideal

location. Moreover, when a relative solution, i.e., the shooter

location relative to the sensor, is transformed into a geo-

rectified solution using a magnetometer and GPS, the solu-

tion often becomes unusable due to localization errors. Geo-

rectified solutions are necessary when displaying hostile fire

icons on a Command and Control Geographic Information

System (C2 GIS) map display.

SW-GDSs use acoustic phenomena analysis of small-arms

fire to localize the source of incoming fire, usually with a

bearing and range relative to the user [7]. These individual

SW-GDSs operate separately and are not designed to exploit

the sensor network layout of all the soldiers within a Small

Combat Unit (SCU) to help increase accuracy. Researchers are

exploring some novel solutions that utilize the team aspect of

these SCUs by exploiting all SW-GDSs in a squad/platoon

to increase detection rates and accuracy [8]–[10]. This paper

presents the development of a sensor fusion module that would

take full advantage of the team aspect of a SCU to provide a

fused solution that would be highly accurate and suitable for

a C2 GIS map display compared to the individual soldier’s

solution. The objective here is to improve accuracy across

an entire SCU so even soldiers in non-ideal settings (out of

range, bad angle, etc.) can exploit the good solutions from

their neighbors to come up with improved solutions: both geo-

rectified and relative.

The individual SW-GDSs considered here is composed of

a passive array of microphones that is able to localize a

gunfire event by measuring the direction of arrival for both

the acoustic wave generated by the muzzle blast and the

shockwave generated by the supersonic bullet [1], [2]. After

detecting a gunfire, the individual sensors report their solution

along with their GPS positions to a central node. At the

central node, the individual solutions are fused along with

the GPS positions to yield an highly accurate, geo-rectified

solution, which is then relayed back to individual soldiers

for added situational awareness. Structure of this paper is as

follows: section II presents the measurement model for the

acoustic sensor nodes, and section III presents the localization

algorithm that converts the sensor measurements to a gunfire

position estimate. Details of the central node data fusion and

the corresponding nonlinear least-squares problem is given

in section IV. Section V presents the Gauss-Newton method

to solve the nonlinear least-squares problem and section VI

presents the results from numerical simulations. Finally, sec-

tion VII concludes the paper and discusses the current research

challenges.

II. PROBLEM SETUP

Consider a SCU consist of n individual soldiers equipped

with the SW-GDS. In order to set up the problem and develop

a sensor model, we first consider a scenario where there is

only one shooter and the SW-GDS receives both the muzzle

blast and the shockwave. The shooter or the target location and

the soldier or the ith sensor location are defined as T and Si,

respectively. For simplicity, the problem is formulated in ℜ2,

i.e., T ∈ ℜ2 ≡

[
Tx

Ty

]
and Si ∈ ℜ2 ≡

[
Six

Siy

]
. Now define the

individual range, ri, and bearing, φi, between the ith sensor

node and the target as

ri =

√
(Tx − Six

)
2

+
(
Ty − Siy

)2
(1)

φi = arctan 2
(
Ty − Siy

, Tx − Six

)
(2)
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Figure 1. Geometry of the bullet trajectory and propagation of the muzzle
blast and shockwave to the sensor node.

When a gun fires, the blast from the muzzle produces a

spherical acoustic wave that can be heard in any direction. The

bullet travels at supersonic speeds and produces an acoustic

shockwave that emanates as a cone from the trajectory of the

bullet. Because the bullet is traveling faster than the speed

of sound, the shockwave arrives at the sensor node before

the wave from the muzzle blast, which we simply refer to

as the muzzle blast. Figure 1 illustrates the geometry of the

shockwave and the muzzle blast for the ith sensor node when

the orientation of the bullet trajectory is ω with respect to the

horizontal axis. As the bullet pushes air, it creates an impulse

wave. The wavefront is a cone whose angle θ with respect to

the trajectory is

θ = arcsin

(
1

m

)
(3)

where m is the Mach number. The Mach number is assumed

to be known since the typical value for a Mach number is

m = 2 [7]. Since the Mach number directly influences the

range estimates, uncertainty in bullet speed may be treated as

range estimation error. As indicated in figure 1, the angle φi

indicates the direction of arrival (DOA) of the muzzle blast,

and ϕi indicates the DOA of the shockwave. The muzzle blast

DOA is measured counter-clockwise such that 0 ≤ φi ≤ 2π1.

For a more detailed description of the scenario, please refer

to [7]. Figure 2 indicates the field of view (FOV) for both the

muzzle blast and the shockwave. Note that the FOV of the

muzzle blast is 2π, i.e., omnidirectional, and the FOV for the

shockwave is π − 2θ. SW-GDS receives the shockwave only

if the muzzle blast DOA is within the bounds

π/2 + θ + ω < φi < 3π/2 − θ + ω (4)

Now the DOA angle for the shockwave can be written as

ϕi =

{
−π

2 − θ + ω, if π + ω < φi < 3π
2 − θ + ω;

π
2 + θ + ω, if π

2 + θ + ω < φi < π + ω.
(5)

The first case π + ω < φi < 3π
2 − θ + ω corresponds to the

scenario where the sensor is located above the bullet trajectory

and the third case π
2 + θ + ω < φi < π + ω corresponds

1The arctan 2 in (2) yields −π ≤ φi ≤ π. Thus 2π must be added to the
arctan 2 result to obtain a positive φi if φi < 0.
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Figure 2. Muzzle blast and shockwave field of view

to the scenario where the sensor is located below the bullet

trajectory (as shown in figure 1). The case where φi = π + ω
corresponds to the scenario when the sensor is located on the

bullet trajectory and here we do not consider such a scenario.

If φi is outside the bound given in (4), the sensor node only

receives the the muzzle blast and it is outside the FOV of the

shockwave. Under the assumptions that the bullet maintains

a constant velocity over its trajectory, the time difference

between the shockwave and the muzzle blast can be written

as [2]

τi =
ri

c
[1 − cos |φi − ϕi|] , ∀φi 6= ϕi (6)

where c indicates the speed of sound. Utilizing (5), the bullet

trajectory angle, ω, can be obtained from the shockwave DOA

angle. Though this paper assumes that the bullet speed is

constant over its trajectory, others have proposed localization

algorithms [10], [11] that employ more realistic bullet speed

models at the expense of computational efficiency.

III. DATA FUSION AT SENSOR NODE LEVEL

When the sensor node is within the FOV of the shockwave,

the three available measurements are the two DOA angles and

the time difference of arrival (TDOA) between the muzzle

blast and the shockwave, i.e.,

φ̂i = h1 (T, Si, ω) + ηφ (7)

ϕ̂i = h2 (T, Si, ω) + ηϕ (8)

τ̂i = h3 (T, Si, ω) + ητ (9)

where h1(·) is given in (2), h2(·) is given in (5), and

h3(·) is given in (6). The measurement noise is assumed to

be zero mean Gaussian white noise, i.e., ηφ ∼ N (0, σ2
φ),

ηϕ ∼ N (0, σ2
ϕ) and ητ ∼ N (0, σ2

τ ). Let T̂i =
[
φ̂i r̂i ω̂i

]

denotes the individual sensor level estimates on the target

bearing, range, and the bullet trajectory. Data fusion at the

sensor node involves calculating these individual estimates

based on the three sensor measurements.

Using (5), the bullet trajectory angle, ω, can be obtained

from the shockwave DOA measurements. Thus, the observa-

tions on the trajectory angle can be written as

ω̂i = ωi + ηϕ (10)
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Now the likelihood function, p (ω̂i|T, Si, ω), can be written as

p (ω̂i|T, Si, ω) = N
(
ω, σ2

ϕ

)

From (6), the range can be written in terms of the TDOA as

ri =
cτi

[1 − cos |φi − ϕi|]
(11)

The observation of ri may be written as

r̂i =
cτ̂i[

1 − cos
∣∣∣φ̂i − ϕ̂i

∣∣∣
] (12)

Using the first-order Taylor series, the range measurement can

be approximated as

r̂i ≈
cτi

[1 − cos |φi − ϕi|]
+

[
c

[1−cos|φi−ϕi|]
− cτi sin|φi−ϕi|

[1−cos|φi−ϕi|]
2

] [
ητ

ηφϕ

]

= ri + H(T, Si, ω)ηr

where

ηr =

[
ητ

ηφϕ

]
& ηφϕ ∼ N

(
0, σ2

φ + σ2
ϕ

)

and

H(T, Si, ω) =
[

c
[1−cos|φi−ϕi|]

− cτi sin|φi−ϕi|

[1−cos|φi−ϕi|]
2

]

Now the likelihood p (r̂i|T, Si, ω) can be approximated as

p (r̂i|T, Si, ω) ≈ N
(
ri, σ

2
r(T, Si, ω)

)

where the variance σ2
r(T, Si, ω) can be written as

σ2
r(T, Si, ω) = H(T, Si, ω)

[
σ2

τ 0
0 σ2

φ + σ2
ϕ

]
HT (T, Si, ω)

(13)

Thus, the likelihood function p
(
T̂i|T, Si, ω

)
can be approxi-

mated as

p
(
T̂i|T, Si, ω

)
≈ N (µTi

, ΣTi
) (14)

where

µTi
=




φi

ri

ω



 & ΣTi
=




σ2

φ 0 0

0 σ2
r(T, Si, ω) 0

0 0 σ2
ϕ





It is assumed that a GPS receiver is used to obtain an accurate

positioning on each sensor. Thus, the position observation on

the sensors are given as

Ŝi =

[
Six

Siy

]
+

[
vix

viy

]
(15)

where the noise terms are assumed to be zero mean Gaussian

white, i.e., vix
∼ N (0, σ2

ix
) and viy

∼ N (0, σ2
iy

). Now the

GPS measurement likelihood function may be written as

p
(
Ŝi|Si

)
∼ N

([
Six

Siy

]
,

[
σ2

ix
0

0 σ2
iy

])
≡ N (µSi

, ΣSi
)

(16)

Assumption 1. Without loss of generality, it can be assumed

that the GPS observations on sensor position are independent

of target location, observations on target location, and the

projectile trajectory information, i.e.,

p
(
Ŝi|Si

)
= p

(
Ŝi|T, Si, ω

)
= p

(
Ŝi|T̂i, T, Si, ω

)

Base on assumption 1, the joint probability

p
(
T̂i, Ŝi|T, Si, ω

)
can be calculated as

p
(
T̂i, Ŝi|T, Si, ω

)
= p

(
Ŝi|T̂i, T, Si, ω

)
p

(
T̂i|T, Si, ω

)

(17)

Substituting (14) and (16), the above joint likelihood can be

written as

p
(
T̂i, Ŝi|T, Si, ω

)
≈ N (µSi

, ΣSi
)N (µTi

, ΣTi
) (18)

Now using the Bayes’ rule, the node level estimates are

given as

p
(
T, Si, ω|T̂i, Ŝi

)
=

p
(
T̂i, Ŝi|T, Si, ω

)
p (T, Si, ω)

∫ ∫ ∫
p

(
T̂i, Ŝi|T, Si, ω

)
p (T, Si, ω) dTdSidω

(19)

Note that the denominator in (19) indicates the normalization

factor and since no a priori information is assumed to be

known, a uniform pdf may be selected for p (T, Si, ω). Since

the denominator is the normalizing term, which is a constant

with respect to T , Si, and ω, equation (19) can be written as

p
(
T, Si, ω|T̂i, Ŝi

)
≈ αp

(
T̂i, Ŝi|T, Si, ω

)
(20)

where α is a constant.

Now for a sensor located in the FOV of the shockwave, the

target location can be estimated as:

T̂xi
= Ŝix

+ r̂i cos(φ̂i) (21)

T̂yi
= Ŝiy

+ r̂i sin(φ̂i) (22)

When the sensor is located outside the shockwave FOV, the

only estimate would be the bearing angle. After individual

estimates are obtained at the sensor node level, the measured

information is transmitted to a central node where it is fused

to obtain a more accurate estimate of shooter location.

IV. DATA FUSION AT THE CENTRAL NODE

While sensors in the FOV of the muzzle blast and the shock-

wave yield a range, bearing, and trajectory angle estimates, the

gunfire detection systems outside the FOV of the shockwave

yield a muzzle blast DOA. Also, GPS measurements are

available on each sensor locations. At the central node, this

information from the individual sensor nodes is fused to obtain

an accurate estimate of the shooter location, bullet trajectory

angle, and the sensor location.
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Based on assumption 1, the joint likelihood function associ-

ated with each sensor, i.e., p
(
T̂i, Ŝi|T, Si, ω

)
, can be written

as

p
(
T̂i, Ŝi|T, Si, ω

)
= p

(
Ŝi|T̂i, T, Si, ω

)
p

(
T̂i|T, Si, ω

)

Let S1:n = {S1, S2, . . . , Sn}, T̂1:n = {T̂1, T̂2, . . . , T̂n}, and

Ŝ1:n = {Ŝ1, Ŝ2, . . . , Ŝn}, where n indicates the number of

sensors. Since the sensor nodes are independent of each other,

the joint conditional density p
(
T̂1:n, Ŝ1:n|T,S1:n, ω

)
can be

defined as

p
(
T̂1:n, Ŝ1:n|T,S1:n, ω

)
=

n∏

1

p
(
T̂i, Ŝi|T, Si, ω

)
(23)

Here we consider the maximum likelihood approach to obtain

the fused estimates. In the maximum likelihood estimation ap-

proach considered here, an estimate of the sensor locations, the

shooter location, and the bullet trajectory angle are obtained

so that the joint log-likelihood function is maximized, i.e.,

max
T,S1:n,ω

ln
{
p

(
T̂1:n, Ŝ1:n|T,S1:n, ω

)}

⇒ max
T,S1:n,ω

n∑

1

ln
{

p
(
T̂i, Ŝi|T, Si, ω

)} (24)

Based on the results given in the previous section, the criteria

for the maximum likelihood estimation can be written as

max
T,S1:n,ω

n∑

1

[ln {N (µTi
, ΣTi

)} + ln {N (µSi
, ΣSi

)}]

(25)

Note that the densities N (µTi
, ΣTi

) and N (µSi
, ΣSi

) may

be written as

N (µTi
, ΣTi

) =
1√

|2πΣTi
|
exp

{
−

1

2

(
T̂i − µTi

)T

Σ−1
Ti

(
T̂i − µTi

) } (26)

where

µTi
=




φi

ri

ω



 =




arctan2

(
Ty − Siy

, Tx − Six

)
√

(Tx − Six
)
2

+
(
Ty − Siy

)2

ω



 &

ΣTi
=




σ2

φ 0 0

0 σ2
r (T, Si, ω) 0

0 0 σ2
ϕ





and

N (µSi
, ΣSi

) =
1√

|2πΣSi
|
exp

{
−

1

2

(
Ŝi − µSi

)T

Σ−1
Si

(
Ŝi − µSi

)} (27)

where

µSi
=

[
Six

Siy

]
& ΣTi

=

[
σ2

ix
0

0 σ2
iy

]

After substituting (26) and (27) into (25), the maximum

likelihood criteria may be written as

min
T,S1:n,ω

n∑

1

[
1

2

(
T̂i − µTi

)T

Σ−1
Ti

(
T̂i − µTi

)
+

1

2

(
Ŝi − µSi

)T

Σ−1
Si

(
Ŝi − µSi

)
+

ln
{√

|2πΣTi
|
}

+ ln
{√

|2πΣSi
|
}]

(28)

Note that the term, ln
{√

|2πΣTi
|
}

, in above equation is

present due to the fact that ΣTi
is a function of T , S, and

ω. The last term, ln
{√

|2πΣSi
|
}

can be ignored since ΣSi

is a known constant matrix. Since ΣTi
is assumed to be a

diagonal matrix, (28) can be rewritten as

min
T,S1:n,ω

n∑

1

[
ln(εσr) +

1

2

(
T̂i − µTi

)T

Σ−1
Ti

(
T̂i − µTi

)

+
1

2

(
Ŝi − µSi

)T

Σ−1
Si

(
Ŝi − µSi

)]

(29)

where ε is defined as

ε = (2π)3/2σφσϕ

Apart from the initial term, ln(εσr), the optimization problem

given in (29) is similar to that used in the weighted nonlinear

least-squares. Thus, the maximum likelihood approach pre-

sented here is similar to the weighted nonlinear least-squares

estimation.

V. NONLINEAR LEAST SQUARES

There exist no closed form solution to the nonlinear least-

squares optimization problem given in (29) and therefore a nu-

merical approach needs to be used. A few common approaches

to solving the nonlinear least-squares problem include the

Gauss-Newton method, Nelder-Mead simplex method, and

Marquardt method [12]. Almost all these approaches are

iterative methods that require an initial approximation to the

unknown parameters and provide successively better approxi-

mations. The iterative process is repeated until the parameters

do not change to within specified limits.

This section provides the Gauss-Newton method for solving

the nonlinear least squares problem given in (29). The main

advantage of the Gauss-Newton method is that it exhibits

a “quadratic convergence,” which, simply put, means that

the uncertainty in the parameters after p + 1 iterations is

proportional to the square of the uncertainty after p iterations.

Once these uncertainties begin to get small, they decrease quite

rapidly. An additional advantage of the Gauss-Newton method

is that it only requires calculating the first-order derivatives.

The major problem with the Gauss-Newton method is that it

sometimes diverges if the initial approximation is too far from

truth.
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In order to simplify the formulation, we treat ΣTi
as a

known constant matrix. Thus, (29) can be rewritten as

min
T,S1:n,ω

J =
1

2
△yT W△y (30)

where

△y =





T̂1 − µT1

Ŝ1 − µS1

...

T̂n − µTn

Ŝn − µSn




, W =





Σ−1
Ti

0 0 0 0

0 Σ−1
Si

0 0 0

0 0
. . . 0 0

0 0 0 Σ−1
Tn

0

0 0 0 0 Σ−1
Sn





Let x =
[
Tx Ty ω S1x

S1y
. . . Snx

Sny

]T
de-

note the parameters to be estimated and let y =[
fT
1 (x) . . . fT

i (x) . . . fT
n (x)

]T
denote the measure-

ments. Here fi(x) =
[
φi ri ω Six

Siy

]T
is defined as

fi (x) =





arctan 2
(
Ty − Siy

, Tx − Six

)
√

(Tx − Six
)
2

+
(
Ty − Siy

)2

ω
Six

Siy




(31)

Also let ŷ =
[
ŷT

1 , . . . , ŷT
i , . . . , ŷT

n

]T
where ŷi =[

T̂ T
i ŜT

i

]T

. Now △y is defined as

△y = ŷ − y

Let the current estimates estimates of x be denoted as

xc =
[
T c

x T c
y ωc Sc

1x
Sc

1y
. . . Sc

nx
Sc

ny

]T

Define

△x = x − xc

If the components of △x are sufficiently small, then using the

first-order Taylor series approximation, we have

f (x) ≈ f (xc) + F△x (32)

where

F ≡
∂f

∂x

∣∣∣∣
xc

Now the measurement residual △y can be linearly approxi-

mated as

△y ≈ ŷ − f (xc) − F△x = △yc − F△x (33)

where △yc = ŷ − f (xc). Substituting (33) in (30) yields

J ≈
1

2

(
△yc − F△x

)T

W

(
△yc − F△x

)
(34)

The △x that minimizes the above cost function can be written

as

△x =
(
FT WF

)−1
FT W△yc (35)

After obtaining △x, the current estimates are redefined as

xc = △x + xc (36)

Model

f (x)

Determine

F ≡ ∂f

∂x

∣∣∣∣
xc

Initial: xcxc

△yc = ŷ − f (xc) ŷ, W

△x =
(
FT WF

)−1
FT W△yc

△x <
ε?

stop

xc = △x + xc

no

yes

Figure 3. Gauss-Newton Algorithm.

Now using the current estimates, F , W , and △yc are calcu-

lated. Then, △x estimate for the next iteration is calculated

from (35) and this process is repeated until △x converges to

a prescribed small value. A schematic representation of the

Gauss-Newton algorithm is presented in figure 3.

VI. RESULTS

This section presents numerical simulations to assess the lo-

calization improvement due to the proposed fusion algorithm.

Here we consider two separate simulation scenarios, for both

scenarios, we assume that there are five sensor nodes located

at

S =

[
127 20 90 136 182
107 22 0 68 59

]

For simulation purposes, we assume a constant velocity model

for the bullet. Thus, the Mach number is selected to be m = 2
and the speed of sound is selected to be c = 342 m/sec. For

both scenarios, the measurement noise models are selected as

σix
= σiy

= 5m, σφ = σϕ = 4o, and στ = 1 msec. Since

there exist several approaches to solve the nonlinear least-

squares problem, two different methods are used to obtain

solutions for both simulation scenarios. In the first method,

the optimization problem is solved using the Gauss-Newton

method [12] presented in the previous section. The second

approach uses the Nelder-Simplex algorithm [13], i.e., the

fminsearch function in Matlab.
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A. Simulation I

For the first simulation, the shooter is assumed to be located

at T =
[
50 50

]T
and we select the bullet trajectory to be

ω = 30o. Figure 4 shows the first simulation scenario. Due to

the sensor locations, the second and the third sensors do not

receive the shockwave.
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Figure 4. Simulation I Scenario

In order to evaluate the system performance, a Monte Carlo

simulation is conducted for both the Gauss-Newton method

and the simplex algorithm. The mean shooter locations and

the associated error ellipses obtained from the Monte Carlo

simulations using the Gauss-Newton method are given in

figure 5. A separate plot is not provided for the results obtained

using the simplex algorithm since they are very similar to that

obtained for the Gauss-Newton method. Figure 5 indicates that

the sensor five performs the worst out of the three sensors in

the shockwave FOV. Figure 5 also indicates that the fused

estimate is superior to the individual sensor estimates, and

the uncertainty associated with the fused estimates is much

less than the uncertainty associated with the individual sensor

estimates.
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Figure 5. Simulation I: Mean Results from Monte Carlo Runs

Table I contains the mean shooter location estimate of the

individual sensors and the fusion algorithms over the Monte

Carlo run. The “average” estimate presented in table I indicates

the estimate obtained by simply averaging the individual target

estimate from sensors one, four, and five. Table I also contains

the root mean square error (RMSE) associated with each

estimate. Based on the RMSE presented in table I, one could

conclude that that fused estimates outperform the individual

sensors and the simple average estimate.

Table I
SIMULATION I: SHOOTER LOCATION

Tx (m) Ty (m) RMSE (m)

Truth 50 50 –

Sensor 1 48.3513 47.2948 23.2870
Sensor 2 – – –
Sensor 3 – – –
Sensor 4 42.9248 50.2141 31.1132
Sensor 5 37.1197 52.0782 65.6542

Average 42.7986 49.8623 25.9660
Gauss-Newton 49.9066 49.9134 6.8639
Nedler-Simplex 50.0493 50.0588 6.9972

Table II contains the mean bullet trajectory angle estimate

obtained from the individual sensors and the fusion algorithms

over the Monte Carlo run. Table II also contains the RMSE

associated with each trajectory angle estimate. Note that the

fused trajectory estimate is simply the average of the individual

sensor estimates due to the way in which ω appears in (31).
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Figure 6. Simulation I: Localization error histogram for average estimates

Figure 6 presents the shooter localization error histogram for

the average estimate, i.e., the estimate obtained by simply av-

eraging the individual target estimates from sensors one, four,

and five. Figure 7 presents the localization error histogram for

the fused estimate obtained for the Gauss-Newton method.

Table III contains RMSE associated with the sensor location

estimates. Interestingly, the fusion algorithm was able to

improve the sensor location accuracy by reducing the GPS

uncertainties. Based on the RMSE presented in tables I,II, and

III, one could conclude that that fused estimates outperform

the individual sensors.

B. Simulation II

For the second simulation, the shooter is assumed to be

located at T =
[
150 −50

]T
and we select the bullet
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Figure 7. Simulation I: Localization error histogram for fused estimates

Table II
SIMULATION I: BULLET TRAJECTORY

ω (deg) RMSE (deg)

Truth 30 –

Sensor 1 30.0641 3.9690
Sensor 2 – –
Sensor 3 – –
Sensor 4 30.3402 3.9970
Sensor 5 29.9591 3.9029

Average 30.1211 2.2128
Gauss-Newton 30.1211 2.2128
Nedler-Simplex 30.1999 2.4674

Table III
SIMULATION I: SENSOR LOCATION RMSE

GPS (m) Gauss-Newton (m) Nedler-Simplex (m)

Sensor 1 7.0215 6.5453 6.5938
Sensor 2 7.0002 6.3195 6.3530
Sensor 3 7.0028 6.6513 6.6770
Sensor 4 7.1509 6.5259 6.6201
Sensor 5 7.0223 6.7883 6.8731

trajectory to be ω = 170o. Figure 8 shows scenario for the

second simulation. As shown in figure 8, only the second and

the third sensors are in the FOV of the shockwave.
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Figure 8. Simulation II Scenario

The mean shooter locations and the associated error ellipses

obtained from the Monte Carlo simulation using the Gauss-

Newton method are given in figure 9. Figure 9 indicates that

both sensor two and sensor three are of similar accuracy since

they are equal distance from the bullet trajectory. Figure 9

also indicates that the fused estimate is superior to individual

sensor estimates and the uncertainty associated with the fused

estimates is much less than the uncertainty associated with the

individual sensor estimates.

110 120 130 140 150 160 170 180 190 200 210
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

 

 

Truth

Fused

Fused Err

Sensor 2 Est

Sensor 2 Err

Sensor 3 Est

Sensor 3Err

x-axis
y

-a
x

is

Figure 9. Simulation II: Mean Results from Monte Carlo Runs

Table IV contains the mean shooter location estimate of the

individual sensors and the fusion algorithms over the Monte

Carlo runs. Table IV also contains the RMSE associated with

each estimate. Based on the RMSE presented in table IV,

one could conclude that that fused estimates outperform the

individual sensors and the simple average estimate.

Table IV
SIMULATION II: SHOOTER LOCATION

Tx (m) Ty (m) RMSE (m)

Truth 150 -50 –

Sensor 1 – – –
Sensor 2 156.5714 -56.8403 49.9558
Sensor 3 156.3943 -57.4820 43.3278
Sensor 4 – – –
Sensor 5 – – –

Average 156.4828 -57.1611 34.2454
Gauss-Newton 150.1808 -50.6793 10.3593
Nedler-Simplex 150.0338 -50.5054 10.7630

Figure 10 presents the shooter localization error histogram

for the average estimate and figure 11 presents the localization

error histogram for the fused estimate obtained for the Gauss-

Newton method.

Table V contains the mean bullet trajectory angle estimate

and associated RMSE obtained from the individual sensors

and the fusion algorithms over the Monte Carlo runs. Finally,

table VI contains RMSE associated with the sensor location

estimates for simulation two. Note that the fusion algorithm

was able to improve the sensor location accuracy by reducing

the GPS uncertainties. The RMSE presented in tables IV,V,

and VI, indicate that fused estimates outperform the individual

sensors for the second simulation.
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Figure 10. Simulation II: Localization error histogram for average estimates
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Figure 11. Simulation II: Localization error histogram for fused estimates

Table V
SIMULATION II: BULLET TRAJECTORY

ω (deg) RMSE (deg)

Truth 170 –

Sensor 1 – –
Sensor 2 169.8829 4.1206
Sensor 3 169.9445 4.0493
Sensor 4 – –
Sensor 5 – –

Average 169.9137 2.8139
Gauss-Newton 169.9137 2.8139
Nedler-Simplex 169.9098 3.0287

Table VI
SIMULATION II: SENSOR LOCATION RMSE

GPS (m) Gauss-Newton (m) Nedler-Simplex (m)

Sensor 1 6.9913 6.7276 6.7284
Sensor 2 6.9897 6.7586 6.7848
Sensor 3 6.9484 6.6360 6.6923
Sensor 4 7.0946 6.7296 6.7282
Sensor 5 7.0078 6.7280 6.7317

VII. FINAL REMARKS

The shooter localization problem using a network of soldier-

worn gunfire detection systems is considered here. This paper

presents a fusion algorithm that utilizes the benefits of the

sensor network layout of all the sensors within a small

combat unit to help refine the shooter localization accuracy.

The individual gunfire detection systems considered here are

composed of a passive array of microphones that is able to

localize a gunfire event by measuring the direction of arrival

for both the muzzle blast and the shockwave. After detecting

a gunfire, the individual sensors report their solution along

with their GPS positions to a central fusion node. At the

central node, the individual solutions are fused along with

the GPS locations on the soldiers to yield a highly accurate

geo-rectified solution. Numerical results given here indicate

that the fused estimates are more accurate than the individual

localization results. Future work include further analyzing the

linearization issues associated with the maximum likelihood

approach and developing a mathematically rigorous method

to quantify the uncertainties associated with the maximum

likelihood estimates.

ACKNOWLEDGEMENT

This work is conducted in collaboration with the US Army

Natick Soldier Research Development & Engineering Center

(NSRDEC) and the US Army Armament Research, Develop-

ment and Engineering Center (ARDEC).

REFERENCES

[1] G. L. Duckworth, D. C. Gilbert, and J. E. Barger, “Acoustic counter-
sniper system,” in Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series, ser. Presented at the Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference, D. Spector &
E. M. Carapezza, Ed., vol. 2938, Feb. 1997, pp. 262–275.

[2] J. Bedard and S. Pare, “Ferret: a small arms fire detection system:
localization concepts,” vol. 5071, no. 1. SPIE, 2003, pp. 497–509.

[3] J. Millet and B. Balingand, “Latest achievements in gunfire detection
systems,” in In Proc. RTO MP-SET-107 Battlefield Acoustic Sensing for

ISR Applications, Oct. 2006.
[4] J. Ash, G. Whipps, and R. Kozick, “Performance of shockwave-based

shooter localization under model misspecification,” in Acoustics Speech

and Signal Processing (ICASSP), 2010 IEEE International Conference

on, 2010, pp. 2694 – 2697.
[5] P. Kuckertz, J. Ansari, J. Riihijarvi, and P. Mahonen, “Sniper fire

localization using wireless sensor networks and genetic algorithm based
data fusion,” in Military Communications Conference, 2007. MILCOM

2007. IEEE, 2007, pp. 1 – 8.
[6] M. Maroti, G. Simon, A. Ledeczi, and J. Sztipanovits, “Shooter local-

ization in urban terrain,” Computer, vol. 37, no. 8, pp. 60 – 61, 2004.
[7] L. Kaplan, T. Damarla, and T. Pham, “QoI for passive acoustic gunfire

localization,” in Mobile Ad Hoc and Sensor Systems, 2008. MASS 2008.

5th IEEE International Conference on, Oct. 2008, pp. 754 –759.
[8] A. Ledeczi, P. Volgyesi, M. Maroti, G. Simon, G. Balogh, A. Nadas,

B. Kusy, S. Dora, and G. Pap, “Multiple simultaneous acoustic source
localization in urban terrain,” in In Proc. 4th International Symposium

on Information Processing in Sensor Networks (IPSN, 2005.
[9] P. Volgyesi, G. Balogh, A. Nadas, C. B. Nash, A. Ledeczi, K. Pence,

T. Bapty, J. Scott, and T. N. Police, “Shooter localization and weapon
classification with soldier-wearable networked sensors,” in Conference

on Mobile Systems, Applications, and Services, 2007.
[10] D. Lindgren, O. Wilsson, F. Gustafsson, and H. Habberstad, “Shooter

localization in wireless sensor networks,” in Information Fusion, 2009.

FUSION ’09. 12th International Conference on, 2009, pp. 404 –411.
[11] R. Kozick, G. Whipps, and B. Sadler, “Accuracy and tradeoff analysis

of sniper localization systems with a network of acoustic sensors,” in
in Proc. MSS Battlespace Acoustics & Seismic Sensing, Magnetic &

Electric Field Sensors, 2009.
[12] J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic System.

Boca Raton, FL: Chapman & Hall/CRC, 2004, ch. 1.
[13] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimiza-

tion,” The Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

405


